Exercise 21

Find the gradient vector field of f.

$$
f(x, y)=y \sin (x y)
$$

Solution

Calculate the gradient and call it \mathbf{F}.

$$
\begin{aligned}
\mathbf{F} & =\nabla f \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle f \\
& =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
& =\left\langle\frac{\partial}{\partial x}[y \sin (x y)], \frac{\partial}{\partial y}[y \sin (x y)]\right\rangle \\
& =\left\langle\left[\frac{\partial}{\partial x}(y)\right] \sin (x y)+y \frac{\partial}{\partial x}[\sin (x y)],\left[\frac{\partial}{\partial y}(y)\right] \sin (x y)+y \frac{\partial}{\partial y}[\sin (x y)]\right\rangle \\
& =\left\langle(0) \sin (x y)+y\left[\cos (x y) \cdot \frac{\partial}{\partial x}(x y)\right],(1) \sin (x y)+y\left[\cos (x y) \cdot \frac{\partial}{\partial y}(x y)\right]\right\rangle \\
& =\langle y[\cos (x y) \cdot(y)], \sin (x y)+y[\cos (x y) \cdot(x)]\rangle \\
& =\left\langle y^{2} \cos (x y), \sin (x y)+x y \cos (x y)\right\rangle
\end{aligned}
$$

The vector field of this gradient is superimposed on a contour plot of $f(x, y)$. Notice that the vectors are perpendicular to each of the contours, pointing in the direction of greatest increase.

